

Combined Gas Law: (use for GASES ONLY when all THREE VARIABLES for a gas are CHANGING - nothing remains constant in this type of problem)

From Reference Table T:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

P ₁ = Initial Presure	V ₁ = Initial Volume	T ₁ = Initial Kelvin Temperature
P2 = Final Pressure	V2 = Final Volume	T2 = Final Kelvin Temperature

**NOTE: You MUST use Kelvin (not °C) for the calculation to work!

Sample Problem 1: A gas has a volume of 100. mL at a temperature of 20.0 K and a pressure of 760. mmHg. What will be the new volume if the temperature is changed to 40.0 K and the pressure to 380. mmHg?

$$\frac{V_{1} = 100. \text{ mL}}{T_{1} = 20.0 \text{ K}} = \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} = \frac{3.04 \times 10^{6} = 7.600 \times V_{2}}{7.600} = \frac{7.600 \times V_$$

Sample Problem 2: An ideally behaving gas occupies 500. mL at STP. Look
What volume does it occupy at 546 K and 980. KPa?

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{101.3 \times 500.}{273 \text{ K}} = \frac{980. \times V_2}{546}$$

$$\frac{27654900}{267540} = \frac{267540 \times V_{2}}{267540}$$

$$103.4_{mL} = V_{2}$$

*Both Avogadro's Law and the Kinetic Molecular Theory can be used to explain the relationship between pressure, temperature, and volume of a gas.

Some Gas Law Problems to Try:

 A gas has a volume of 75.0 mL at a temperature of 15.0 K and a pressure of 760. mm Hg. What will be the new volume when the temperature is changed to 40.0 K and the pressure is changed to 570. mm Hg?

$$V_1 = 75.0 \text{ mL}$$

 $T_1 = 15.0 \text{ K}$
 $P_1 = 760. \text{ mmHg}$
 $V_2 = 7$
 $V_2 = 7$
 $V_3 = 40.0 \text{ K}$
 $V_2 = 570. \text{ mmHg}$

$$\frac{\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}}{\frac{760. \times 75.0}{15.0}} = \frac{570. \times V_2}{40.0}$$

$$\frac{2280000 = 8550 \times 12}{8550}$$

$$\frac{266.7 \text{ mL}}{2} = \sqrt{2}$$

2. The volume of a sample of a gas at 273°C is 200.0 L. If the volume is decreased to 100.0 L at constant pressure, what will be the new temperature of the gas? A leave pressure out of tormula.

$$V_1 = 200.0L$$
 $T_1 = 273 + 273 = 546K$
 $V_2 = 100.0L$
 $T_2 = ?$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{200.0}{546 \, \text{K}} = \frac{100.0}{T_2}$$

$$\frac{200.0 \times T_2 = 54600}{200.0}$$

$$T_2 = 273 \times$$

3. What will be the new volume of 100. mL of gas if the Kelvin temperature and the pressure are both doubled? (make up values)

$$V_1 = 100 \text{ mL}$$
 $P_2 = 20 \text{ atm}$ $P_1 = 100 \text{ K}$ $T_2 = 200 \text{ K}$ $V_2 = ?$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{10 \text{ atm} \cdot 100.0 \text{ nL}}{100 \text{ K}} = \frac{20. \text{ atm} \cdot V_2}{200 \text{ K}}$$

$$\frac{200000}{2000} = \frac{2000 \sqrt{2}}{2000}$$

$$\frac{100.0 = \sqrt{2}}{2000}$$

4. A gas occupies a volume of 400. mL at a pressure of 330. torr and a temperature of 298 K. At what temperature will the gas occupy a volume of 200. mL and have a pressure of 660. torr?

$$V_1 = 400.mL$$
 $P_1 = 330.torr$
 $T_1 = 298K$
 $T_2 = ?$
 $V_2 = 200.mL$
 $P_2 = 660.torr$

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}$$

$$\frac{330.\times400.}{298} = \frac{660.\times200.}{T_{2}}$$

$$\frac{39336000}{132000} = \frac{132,000 \times T_2}{132000}$$

$$298K = T_2$$

5. At 75.0°C a gas has a volume of 2.20 L and exerts a pressure of 1.30 atm on the walls of the container. If the gas is compressed to a volume of 1.00 L and temperature is
15.0+ reduced to 10.0°C, what is the new pressure on the walls of the container?
$P_1 = \frac{273}{2.202} = \frac{348k}{T_1} = \frac{P_2V_2}{T_2}$ $\frac{809.4}{T_1} = \frac{348 \times P_2}{72}$
$\sqrt{2} = 1.00L$ $2 = 100+273 = 283K$ $1.30 \times 2.20 = \frac{P_{2} \times 1.00}{283}$ $2.33 = P_{2}$ orth
6. A gas at STP occupies a volume of 34.0 liters. What is the temperature of the gas if it is compressed to 20.0 liters by increasing the pressure to 250. kPa?
2=20.0L P,V1 = 12V2 3444.2 ×T2 = 1365000
= 101.3KPa 11 12 3444.2 3444.2
$\frac{101.3 \times 34.0}{2.73} = \frac{30.0 \times 20.0}{T_2}$ $\frac{101.3 \times 34.0}{2.73} = \frac{30.0 \times 20.0}{T_2}$ $\frac{1}{2} = \frac{396 \text{ kg}}{3}$
7. You are given two equally sized containers of Ar and N2 that both behave as ideal
gasses and have equal pressures and temperatures.
 a. Does each container have the same number of particles? Explain.
Yes, egual volumes of gases have the same
b. Do they have the same number of atoms? Explain.
No, each molecule of No Contains 2 actoms
c. Do they have the same mass? Explain.
No, I male of each substance has a
different mass.
Using the first page of your Reference Tables, convert 2.6 atm to mmHg.
latm = 760 mm/tg
1atm = 2.6 atm
7/00 mm Hg X

43

 $X = 2.6 \times 760$ X = 1976 mm Hg